skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kononchuk, Rodion"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yin, Shizhuo; Guo, Ruyan (Ed.)
  2. Abstract Exceptional point degeneracies (EPD) of linear non-Hermitian systems have been recently utilized for hypersensitive sensing. This proposal exploits the sublinear response that the degenerate frequencies experience once the system is externally perturbed. The enhanced sensitivity, however, might be offset by excess (fundamental and/or technical) noise. Here, we developed a self-oscillating nonlinear platform that supports transitions between two distinct oscillation quenching mechanisms – one having a spatially symmetric steady-state, and the other with an asymmetric steady-state – and displays nonlinear EPDs (NLEPDs) that can be employed for noise-resilient sensing. The experimental setup incorporates a nonlinear electronic dimer with voltage-sensitive coupling and demonstrates two-orders signal-to-noise enhancement of voltage variation measurements near NLEPDs. Our results resolve a long-standing debate on the efficacy of EPD-sensing in active systems above self-oscillating threshold. 
    more » « less
  3. Abstract Exceptional point degeneracies (EPDs) in the resonant spectrum of non-Hermitian systems have been recently employed for sensing due to the sublinear response of the resonance splitting when a perturbant interacts with the sensor. The sublinear response provides high sensitivity to small perturbations and a large dynamic range. However, the resonant-based EPD sensing abides to the resolution limit imposed by the resonant quality factors and by the signal-to-noise ratio reduction due to gain-elements. Moreover, it is susceptible to local mechanical disturbances and imperfections. Here, we propose a passive non-resonant (NR) EPD-sensor that is resilient to losses, local cavity variations, and noise. The NR-EPD describes the coalescence of Bloch eigenmodes associated with the spectrum of transfer matrices of periodic structures. This coalescence enables scattering cross-section cusps with a sublinear response to small detunings away from an NR-EPD. We show that these cusps can be utilized for enhanced noise-resilient sensing. 
    more » « less
  4. The application of parity–time (PT) symmetry in optics, especially PT-symmetry breaking, has attracted considerable attention as an approach to controlling light propagation. Here, we report optical limiting by two coupled optical cavities with a PT-symmetric spectrum of reflectionless modes. The optical limiting is related to broken PT symmetry due to light-induced changes in one of the cavities. Our experimental implementation involves a three-mirror resonator of alternating layers of ZnS and cryolite with a PT-symmetric spectral degeneracy of two reflectionless modes. The passive optical limiting is demonstrated by measurements of single 532 nm 6 ns laser pulses and thermo-optical simulations. At fluences below 10mJ/cm2, the multilayer exhibits a flattop passband at 532 nm. At higher fluences, laser heating combined with the thermo-optic effect in ZnS leads to cavity detuning and PT-symmetry breaking of the reflectionless modes. As a result, the entire multilayer structure quickly becomes highly reflective, protecting itself from laser-induced damage. The cavity detuning mechanism can differ at much higher limiting thresholds and include nonlinearity. 
    more » « less
  5. null (Ed.)
    Typical sensors detect small perturbations by measuring their effects on a physical observable, using a linear response principle (LRP). It turns out that once LRP is abandoned, new opportunities emerge. A prominent example is resonant systems operating near N th-order exceptional point degeneracies (EPDs) where a small perturbation ε ≪ 1 activates an inherent sublinear response ∼ ε N ≫ ε in resonant splitting. Here, we propose an alternative sublinear optomechanical sensing scheme that is rooted in Wigner’s cusp anomalies (WCAs), first discussed in the framework of nuclear reactions: a frequency-dependent square-root singularity of the differential scattering cross section around the energy threshold of a newly opened channel, which we use to amplify small perturbations. WCA hypersensitivity can be applied in a variety of sensing applications, besides optomechanical accelerometry discussed in this paper. Our WCA platforms are compact, do not require a judicious arrangement of active elements (unlike EPD platforms), and, if chosen, can be cavity free. 
    more » « less
  6. Abstract Exceptional point degeneracies, occurring in non-Hermitian systems, have challenged many well established concepts and led to the development of remarkable technologies. Here, we propose a family of autonomous motors whose operational principle relies on exceptional points via the opportune implementation of a (pseudo-)PT-symmetry and its spontaneous or explicit violation. These motors demonstrate a parameter domain of coexisting high efficiency and maximum work. In the photonic framework, they can be propelled by thermal radiation from the ambient thermal reservoirs and utilized as autonomous self-powered microrobots, or as micro-pumps for microfluidics in biological environments. The same designs can be also implemented with electromechanical elements for harvesting ambient mechanical (e.g., vibrational) noise for powering a variety of auxiliary systems. We expect that our proposal will contribute to the research agenda of energy harvesting by introducing concepts from mathematical and non-Hermitian wave physics. 
    more » « less